A Case Study of Restoration: Quantifying Design Impacts

Pierce Jones, Director
Program for Resource Efficient Communities

UNIVERSITY of FLORIDA
IFAS Extension
Program for Resource Efficient Communities

We promote application of design, construction and management practices that minimize environmental degradation and make more efficient use of energy, water and other natural resources in master planned residential communities.
Florida Land Development:
Context
Florida Land Development

Population

- 1980 10,000,000
- 2005 17,000,000
- 2030 28,000,000
Florida Land Development
Building Permits: Single-Family Detached

- 2003 155,000
- 2004 185,000
- 2005 208,000
- 2006 146,000
- 2007 70,000
Welcome to The Bonita Bay Group

The Bonita Bay Group™ offers exceptional community living with its environmentally sound development philosophies and innovative designs. Residents enjoy traditional neighborhood gathering spots, recreational facilities and access to community parks that blend seamlessly with surrounding habitats.

Distinctive Lifestyle Experiences

Copyright Statement | Privacy Statement | Refer A Friend
Florida Land Development: Current Conventional Practice
Florida Land Development

Oakland Park
Florida Land Development
Oakland Avenue Lot

FRONT YARD
- Trees minimum of 2 canopy trees and 2 accent trees
- Shrubs 20% minimum
- Groundcover 15% minimum
- Turf 60% maximum

SIDE YARD
- Trees minimum of 1 canopy tree and 2 accent trees
- Shrubs 30% minimum
- Groundcover 0% minimum
- Turf 70% maximum

ALLEY YARD
- Shrubs 30% minimum
- Groundcover 0% minimum
- Turf 70% maximum
Florida Land Development
Conventional Practice
Florida Land Development
Conventional Practice
Florida Land Development
Lake County
Development Impacts:
Energy
Energy Supply

Longleaf - Alachua County

More Efficient

Less Efficient
Energy Supply

2010

Nominal Size

Robinshoer
Williams

Energy Use (ekWh)

0
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000

Nominal Size
Florida Power & Light and Progress Energy Florida are seeking to pass along about $335 million in nuclear costs to customers next year. While a large chunk of the money would go toward upgrading already-existing nuclear plants, customers also would cover expenses for new plants that are not slated to start operating for at least another decade.

If the commission approves Progress’ revised request for the Levy and Crystal River projects, residential customers in 2012 would pay about $4.66 a month for 1,000 kilowatt hours to cover the costs. The hearing comes at a time of heightened scrutiny of nuclear power, largely because of the recent earthquake triggered disaster at Japan’s Fukushima plant.
Development Impacts:
Water Supply
Water woes hit development

EDITOR’S NOTE: This is the first in a series examining how the region’s drinking water is running low.

BY SUSAN STABLEY

South Florida has run out of natural sources of drinking water and will likely experience halted development due to the problem.

Major real estate projects in the tri-county area must be curbed until alternative sources of water can be developed, according to the state. Already, it has told Miami-Dade County to reject 17 large-scale projects because of drinking water scarcity.

And the creation of alternative water sources will not happen soon. The work will cost of hundreds of millions of dollars and can take decades to complete, according to estimates from regional and local water officials.

“For us to go back into a built environment is a very expensive proposition,” said Doug Yoder, assistant director of Miami-Dade County’s water and sewer department.

Last week, Gov. Jeb Bush vowed to make South Florida confront its water issues before the state will approve any more large projects.

“It makes no sense to develop west and west and west without the adequate development of infrastructure and water supply,” Bush said at the Urban Land Institute’s Symposium on Regional Cooperation on March 17.

See WATER, Page 62
Water Supply

Florida Freshwater Withdrawals
(in million gallons per day)

- Ground water
- Surface water

Tampa Bay Water Desalinization Facility

Source: U.S. Geological Survey
Florida Land Development
Conventional Practice
BAYONET POINT — "He's in prison for God knows how long because we can't afford to sod the lawn," said his sobbing daughter, Jennifer Lehr.

Prudente has owned a home in the deed restricted community since 1998. The covenants require homeowners to keep their lawns covered with grass.

Free from jail, Joseph Prudente, 66, inspects his new lawn with pride Sunday. Prudente, who says he barely has enough to pay the mortgage, was jailed for having a brown lawn.
Swiftmud says old sod can't be replaced
Marlene Sokol, Times Staff Writer
In Print: Saturday, November 22, 2008

Homeowner, get used to that sickly looking lawn. Local water managers are saying not to resod until summer. That means no sheets of green turf off a flatbed.

"Anything that causes you to need more water is unacceptable," said Robyn Felix, Southwest Florida Water Management District spokeswoman.

The agency's order, issued more than three weeks ago, has created confusion for local government, an enforcement issue for homeowner associations, and panic among small businesses that install turf.

Baldomero Moreno, left, and Erasto Osoric, who work for Curasod, lay sod Friday at a new home in Wesley Chapel.
Get used to having a brown lawn for a while. As of this week, Tampa Bay Water has virtually drained its 15 billion-gallon reservoir.

From now until the summer rainy season, it must rely on its two remaining sources of water: its sometimes troubled desalination plant and the dwindling supply in the underground aquifer. "It's going to be a long couple of months waiting for the rainy season," Tampa Bay Water spokeswoman Michelle Robinson said Friday.
Water Supply
TBW Annual Production by Supply Type (MGD)

<table>
<thead>
<tr>
<th>Year</th>
<th>Desalinated</th>
<th>Surface Water</th>
<th>Groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>137</td>
<td>46</td>
<td>137</td>
</tr>
<tr>
<td>2007</td>
<td>130</td>
<td>43</td>
<td>130</td>
</tr>
<tr>
<td>2008</td>
<td>113</td>
<td>42</td>
<td>113</td>
</tr>
<tr>
<td>2009</td>
<td>128</td>
<td>33</td>
<td>128</td>
</tr>
</tbody>
</table>
Water Supply

TBW Carbon Footprint by Supply Type (mtons CO₂e)

- Desalinated
- Surface Water
- Groundwater

<table>
<thead>
<tr>
<th>Year</th>
<th>Desalinated</th>
<th>Surface Water</th>
<th>Groundwater</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>15,722</td>
<td>31,255</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>22,494</td>
<td>30,159</td>
<td>14,482</td>
</tr>
<tr>
<td>2008</td>
<td>75,823</td>
<td>26,459</td>
<td>13,747</td>
</tr>
<tr>
<td>2009</td>
<td>70,774</td>
<td>28,812</td>
<td>15,823</td>
</tr>
</tbody>
</table>
Water Supply
Pasco County
Development Impacts:
Water Quality
Controlling Eutrophication: Nitrogen and Phosphorus

Daniel J. Conley, Hans W. Paerl, Robert W. Howarth, Donald F. Boesch, Sybil P. Seitzinger, Karl E. Havens, Christiane Lancelot, Gene E. Likens

The need to reduce anthropogenic nutrient inputs to aquatic ecosystems in order to protect drinking water supplies and to reduce eutrophication, including the proliferation of harmful algal blooms and “dead zones” in coastal marine eco-systems has been widely recognized. …a cascading set of consequences has been set in motion, arising from massive increases in fixed N additions to the biosphere, largely through the production of fertilizers and increases in fossil fuel emissions. P levels have also significantly increased because of fertilizer use, as well as from wastewater.
Water Quality
St Johns River
Water Quality

2005 Fertilizer Consumption (Tons/yr):

- Clay 1,190
- Nassau 1,540
- Duval 3,970
- St Johns 22,780
Water Quality

2005 Fertilizer Consumption (Tons/yr):

<table>
<thead>
<tr>
<th>County</th>
<th>Consumption</th>
<th>Total Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clay</td>
<td>1,190</td>
<td>5,230</td>
</tr>
<tr>
<td>Nassau</td>
<td>1,540</td>
<td>2,040</td>
</tr>
<tr>
<td>Duval</td>
<td>3,970</td>
<td>23,500</td>
</tr>
<tr>
<td>St Johns</td>
<td>22,780</td>
<td>3,480</td>
</tr>
</tbody>
</table>
Florida Land Development
Conventional Practice
Water Quality
Water Quality
Water Quality

A Guide to Florida-Friendly Landscaping

![Image of person working in a yard]

Florida Yards & Neighborhoods Handbook

Table 2. Fertilization Guidelines for Established Turfgrass Lawns in Three Regions of Florida

<table>
<thead>
<tr>
<th>Species</th>
<th>North</th>
<th>Central</th>
<th>South</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahiagrass</td>
<td>2-3</td>
<td>2-4</td>
<td>2-4</td>
</tr>
<tr>
<td>Bermudagrass</td>
<td>3-5</td>
<td>4-6</td>
<td>5-7</td>
</tr>
<tr>
<td>Centipedegrass</td>
<td>1-2</td>
<td>2-3</td>
<td>2-3</td>
</tr>
<tr>
<td>St. Augustinegrass</td>
<td>2-4</td>
<td>2-5</td>
<td>4-6</td>
</tr>
<tr>
<td>Zoysiagrass</td>
<td>3-5</td>
<td>3-6</td>
<td>4-6</td>
</tr>
</tbody>
</table>

Homeowner preferences for lawn quality and maintenance will vary, so the UF Turfgrass Science program recommends a range of fertility rates for each grass species and location. Also, effects within a localized region (for instance, shade, drought, soil conditions and irrigation) will require using a range of fertility rates. FYN generally recommends applying no more than the lowest of the recommended fertilizer ranges. These recommendations assume that grass clippings are recycled.
Water Quality
Sixmile Creek Watershed

Simulated Development

Nitrogen Load (tons/year)
- Existing: 179
- Lo IFAS: 212
- Hi IFAS: 254

Legend:
- Coniferous Plantations
- Improved Pasture
- Medium Density Residential
Development Impacts:
Landscaping
Landscaping Impacts
Conventional Practice
Landscaping Impacts

Greenhouse Gas Accounting (Groundwater)

- Mowing: 15 lbs CO$_2$e/1000ft2/yr
- Fertilizer: 29 lbs CO$_2$e/1000ft2/yr
- Pesticides: 1 lbs CO$_2$e/1000ft2/yr
- Irrigation: 34 lbs CO$_2$e/1000ft2/yr (Groundwater)
Landscaping Impacts
Greenhouse Gas Accounting (Desal)

Mowing: 15 lbs CO$_2$e/1000ft2/yr

Fertilizer: 29 lbs CO$_2$e/1000ft2/yr

Pesticides: 1 lbs CO$_2$e/1000ft2/yr

Irrigation: 579 lbs CO$_2$e/1000ft2/yr (Desal)
Restoration’s Two Designs
Restoration Case Study

• This 5,187-acre master plan evolved significantly over its 4-year permitting process.

• Designs were for 8,500 dwelling units.

• It was fully entitled earlier this summer based on the 2009 design.

• Restoration is entitled to create a mixed-use, transit oriented community with 3.5 million ft² of commercial space.
Restoration 2006

Conventional Practice

Master Plan - August 2006
Edgewater, Florida
Restoration 2009

Reduced Impact Practice

Master Plan - December 2009
Edgewater, Florida
Restoration’s Two Designs - Comparison

Summary

- Natural lands preserved: 34% more and all contiguous
- Density increased: 2.6 to 6.0 units per acre
- Natural/developed area edges: 15 miles less
- Average internal trip length: 1.37 miles less/trip
- Trips captured on-site: 150% more
- Vehicle Miles Traveled (VMT): 41% reduction
- Impervious roadway surface: 42% less
Quantifying Performance:
Housing
Restoration’s Two Designs - Housing
Development Order: 8,500 Dwelling Units (DU)

• Required use of Energy Star reflective roofing products; Pre-plumbing and pre-wiring to roof deck for solar thermal and photovoltaics
• Ductwork and air handlers in conditioned space
• All residential units will achieve a HERS Index Score of 70 or less to meet the USDOE Builder Challenge program
Restoration’s Two Designs - Housing

Development Order: 8,500 Dwelling Units (DU)

- Required use of Energy Star reflective roofing products; Pre-plumbing and pre-wiring to roof deck for solar thermal and photovoltaics
- Ductwork and air handlers in conditioned space
- All residential units will achieve a HERS Index Score of 70 or less to meet the USDOE Builder Challenge program

KW-hrs/yr not consumed: 51,000,000
Metric tons CO2e/yr avoided: 78,000
Utility costs/yr avoided: $6,120,000
Quantifying Performance: Transportation
Restoration’s Two Designs - Transportation

VMT Analysis

Inputs

<table>
<thead>
<tr>
<th></th>
<th>2006 Plan</th>
<th>2009 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trips:</td>
<td>68,000</td>
<td>68,000</td>
</tr>
<tr>
<td>Internal trip length, miles</td>
<td>1.75</td>
<td>0.38</td>
</tr>
<tr>
<td>Onsite trip capture</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>Total daily travel, miles</td>
<td>594,000</td>
<td>349,000</td>
</tr>
<tr>
<td>Gasoline, gallons/day</td>
<td>29,254</td>
<td>17,216</td>
</tr>
</tbody>
</table>

GHG Emissions

<table>
<thead>
<tr>
<th></th>
<th>2006 Plan</th>
<th>2009 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mtons CO2e/yr</td>
<td>98,900</td>
<td>58,200</td>
</tr>
</tbody>
</table>
Restoration’s Two Designs - Transportation

VMT Analysis

Inputs

<table>
<thead>
<tr>
<th></th>
<th>2006 Plan</th>
<th>2009 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trips</td>
<td>68,000</td>
<td>68,000</td>
</tr>
<tr>
<td>Internal trip length, miles</td>
<td>1.75</td>
<td>0.38</td>
</tr>
<tr>
<td>Onsite trip capture</td>
<td>20%</td>
<td>50%</td>
</tr>
<tr>
<td>Total daily travel, miles</td>
<td>594,000</td>
<td>349,000</td>
</tr>
<tr>
<td>Gasoline, gallons/day</td>
<td>29,254</td>
<td>17,216</td>
</tr>
</tbody>
</table>

GHG Emissions

<table>
<thead>
<tr>
<th></th>
<th>2006 Plan</th>
<th>2009 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mtons CO2e/yr</td>
<td>98,900</td>
<td>58,200</td>
</tr>
</tbody>
</table>

Gallons/yr not consumed: $4,400,000$
Metric tons CO2e/yr avoided: $40,700$
Fuel costs/yr avoided: $13,000,000$
Quantifying Performance:
Roads
Restoration’s Road Infrastructure 2006 Design
Life Cycle Analysis (50 year life)

<table>
<thead>
<tr>
<th>Location and Type</th>
<th>Description</th>
<th>Right-of-Way (Ft)</th>
<th>Miles</th>
<th>Lane Miles</th>
<th>$ / Linear Ft</th>
<th>Cost</th>
<th>Annual MtCO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite: A</td>
<td>6-lane divided</td>
<td>150</td>
<td>5.45</td>
<td>32.7</td>
<td>$2,000</td>
<td>$57,552,000</td>
<td>2,289</td>
</tr>
<tr>
<td>Onsite: B</td>
<td>4-lane divided</td>
<td>124</td>
<td>2.17</td>
<td>8.68</td>
<td>$1,500</td>
<td>$17,186,400</td>
<td>608</td>
</tr>
<tr>
<td>Onsite: D</td>
<td>2-way street with bike lanes and on-street parking</td>
<td>70</td>
<td>9.36</td>
<td>18.72</td>
<td>$1,000</td>
<td>$49,420,800</td>
<td>1,310</td>
</tr>
<tr>
<td>Onsite: E</td>
<td>2-way street with parking on 1 side</td>
<td>52</td>
<td>50.27</td>
<td>100.54</td>
<td>$800</td>
<td>$212,340,480</td>
<td>7,038</td>
</tr>
<tr>
<td>Offsite: A</td>
<td>6-lane divided</td>
<td>150</td>
<td>2.58</td>
<td>15.48</td>
<td>$2,000</td>
<td>$27,244,800</td>
<td>1,084</td>
</tr>
<tr>
<td>Offsite: B</td>
<td>4-lane divided</td>
<td>124</td>
<td>2.51</td>
<td>10.04</td>
<td>$1,500</td>
<td>$19,879,200</td>
<td>703</td>
</tr>
</tbody>
</table>
Restoration’s Road Infrastructure 2009 Design

Life Cycle Analysis (50 year life)

<table>
<thead>
<tr>
<th>Location and Type</th>
<th>Description</th>
<th>Right-of-Way (Ft)</th>
<th>Miles</th>
<th>Lane Miles</th>
<th>$ / Linear Ft</th>
<th>Cost</th>
<th>Annual MtCO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onsite: A</td>
<td>6-lane divided</td>
<td>150</td>
<td>0.67</td>
<td>4.02</td>
<td>$2,000</td>
<td>$7,075,200</td>
<td>281</td>
</tr>
<tr>
<td>Onsite: C</td>
<td>6-lane boulevard with streetcar frontage lanes and parking</td>
<td>190</td>
<td>2.68</td>
<td>16.08</td>
<td>$4,000</td>
<td>$56,601,600</td>
<td>1,126</td>
</tr>
<tr>
<td>Onsite: D</td>
<td>2-way street with bike lanes and on-street parking</td>
<td>70</td>
<td>6.03</td>
<td>12.06</td>
<td>$1,000</td>
<td>$31,838,400</td>
<td>844</td>
</tr>
<tr>
<td>Onsite: E</td>
<td>2-way street with parking on 1 side</td>
<td>52</td>
<td>26.75</td>
<td>53.5</td>
<td>$800</td>
<td>$112,992,000</td>
<td>3,745</td>
</tr>
<tr>
<td>Offsite: A</td>
<td>6-lane divided</td>
<td>150</td>
<td>2.81</td>
<td>16.86</td>
<td>$2,000</td>
<td>$29,673,600</td>
<td>1,180</td>
</tr>
</tbody>
</table>
Restoration’s Two Designs - Roads

Life Cycle Analysis (50 year life)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>2006 Plan</th>
<th>2009 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles</td>
<td>72</td>
<td>39</td>
</tr>
<tr>
<td>Lane miles</td>
<td>186</td>
<td>103</td>
</tr>
<tr>
<td>Impervious area, ft²</td>
<td>17,000,000</td>
<td>10,000,000</td>
</tr>
<tr>
<td>Landscaped area, ft²</td>
<td>6,000,000</td>
<td>3,000,000</td>
</tr>
<tr>
<td>Cost</td>
<td>$383,623,680</td>
<td>$238,180,800</td>
</tr>
</tbody>
</table>

GHG Emissions

<table>
<thead>
<tr>
<th>Mtons CO2e/yr</th>
<th>2006 Plan</th>
<th>2009 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mtons CO2e/yr</td>
<td>13,031</td>
<td>7,176</td>
</tr>
</tbody>
</table>
Restoration’s Two Designs - Roads

Life Cycle Analysis (50 year life)

<table>
<thead>
<tr>
<th>Inputs</th>
<th>2006 Plan</th>
<th>2009 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles</td>
<td>72</td>
<td>39</td>
</tr>
<tr>
<td>Lane miles</td>
<td>186</td>
<td>103</td>
</tr>
<tr>
<td>Impervious area, ft(^2)</td>
<td>17,000,000</td>
<td>10,000,000</td>
</tr>
<tr>
<td>Landscaped area, ft(^2)</td>
<td>6,000,000</td>
<td>3,000,000</td>
</tr>
<tr>
<td>Cost</td>
<td>$383,623,680</td>
<td>$238,180,800</td>
</tr>
</tbody>
</table>

GHG Emissions

- Metric tons CO2e/yr avoided: 5,855
- Initial costs avoided: $145,442,880
Restoration’s Two Designs:
Water & Landscaping Impacts
Greenhouse Gas Accounting w/Desal

Annual Inputs

- Landscaped Area: 988 acres
- Pesticides: 2,240 lbs a.i.
- Fertilizer: 135,000 lbs N
- Mowing: 33,000 gal
- Irrigation - Groundwater: 988 mgal

Associated GHG Emissions

- Pesticides: 19
- Fertilizer: 543
- Mowing: 281
- Irrigation - Desal: 10,842

Metric tons CO2e/yr: **11,684**
Restoration’s Landscaping – 2009 Design

Low Impact Design

• The largest lots are 60’ wide
• Compact homes (45’x 70’) 375 ft² landscaped area and no turf
• Less than 25% of residences with lots designed for any turf
Restoration’s Landscaping – 2006 Design

C&D Cottages

<table>
<thead>
<tr>
<th>Type</th>
<th>Bldg. Sq.Ft.</th>
<th>Lot Size</th>
<th>Lot Sq.Ft.</th>
<th>DU/AC (including streets)</th>
<th>Driveway Orientation</th>
<th>Parking Spaces per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cottage 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1</td>
<td>1,260</td>
<td>41 x 63</td>
<td>2,583</td>
<td>7.5</td>
<td>Rear</td>
<td>2</td>
</tr>
<tr>
<td>C-2</td>
<td>1,015</td>
<td>41 x 63</td>
<td>2,583</td>
<td>7.5</td>
<td>Rear</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>1,464</td>
<td>41 x 63</td>
<td>2,583</td>
<td>7.5</td>
<td>Rear</td>
<td>2</td>
</tr>
<tr>
<td>D*</td>
<td>1,464</td>
<td>43 x 63</td>
<td>2,709</td>
<td>7.5</td>
<td>Rear</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: Does not include on-street guest parking. *Indicates corner lot.
Restoration’s Landscaping – 2009 Design
Development Order: Low Impact Practices

• “....no use of potable water in common areas.....”

• “....requirements for minimal to no added inputs of water and synthetic fertilizers and pesticides.....”
Restoration’s Two Designs - Landscaping

Greenhouse Gas Accounting w/Desal

<table>
<thead>
<tr>
<th>Design</th>
<th>2006 Plan</th>
<th>2009 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscaped Area</td>
<td>988 acres</td>
<td>428 acres</td>
</tr>
</tbody>
</table>

Annual Inputs

- **Pesticides:** 2,240 lbs a.i. 354 lbs a.i.
- **Fertilizer:** 135,000 lbs N 18,400 lbs N
- **Mowing:** 33,000 gal 4,460 gal
- **Irrigation - Desal:** 988 mgal 63 mgal

Associated GHG Emissions

- **Metric tons CO2e/yr:** 11,685 798
Restoration’s Two Designs - Landscaping

Greenhouse Gas Accounting w/ Desal

<table>
<thead>
<tr>
<th>Design</th>
<th>2006 Plan</th>
<th>2009 Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landscaped Area</td>
<td>988 acres</td>
<td>428 acres</td>
</tr>
<tr>
<td>Annual Inputs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pesticides:</td>
<td>2,240 lbs a.i.</td>
<td>354 lbs a.i.</td>
</tr>
<tr>
<td>Fertilizer:</td>
<td>135,000 lbs N</td>
<td>18,400 lbs N</td>
</tr>
<tr>
<td>Mowing:</td>
<td>33,000 gal</td>
<td>4,460 gal</td>
</tr>
<tr>
<td>Irrigation - Desal:</td>
<td>988 mgal</td>
<td>63 mgal</td>
</tr>
<tr>
<td>Associated GHG Emissions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metric tons CO2e/yr:</td>
<td>11,685</td>
<td>798</td>
</tr>
</tbody>
</table>

| Metric tons CO2e/yr avoided: | 10,733 |
| Landscaping costs/yr avoided: | ~$4,000,000 |
Restoration’s Two Designs:
Summary
Restoration’s Two Designs - Landscaping

Summary of Environmental Benefits

• Reduced energy demand
• Reduced water demand
• Reduced GHG emissions (>120,000 MtonsCO2e/yr)
• Reduced pollutant loading
• Increased natural areas preserved (~3,200 acres)
Restoration’s Two Designs

Summary of Developer Costs Impacts

- Reduced roadway miles (~47%)
- 160 acres of asphalt and concrete avoided
- Reduced landscaping area (~55%)
- Less area required for stormwater ponds (~33%)

Total on-site infrastructure savings: ~$199,000,000
Restoration’s Two Designs

Summary of Household Cost Impacts

- Reduced utility bills: $700
- Reduced transportation costs: $1,500
- Reduced landscape maintenance costs: $500
- Lower CDD assessments (roads): $2,400
- Lower HOA fees: $400

Total annual savings: ~$5,500
Moving Forward:
Florida Land Development
Floridland Development

The New Normal

- Florida’s resources are clearly becoming limiting
- For landowners and developers, efficient land use and management practices are essential tools for addressing strategic risk management
- Preserving and properly valuing agricultural and natural lands is not optional
- Landscape irrigation with potable water is fundamentally irrational
- Landscape fertilization in impaired watersheds is fundamentally irrational
- Less risky alternatives are available
Florida Land Development

Moving Forward

Better Practices:
• Greater density and retention of natural areas
• Energy-efficient, vertical development
• Mixed-use, transit-oriented community design
• Reduced investment in new infrastructure

Benefits:
• Greatly reduced initial costs (~$200,000,000)
• Reduced homeowner costs (~$400/month)
• Reduced community financial risk
Florida Land Development

NO CDD FEES Homes From the $120s

kbhome.com
888-KB-HOMES
Moving Forward:
UF Extension
Florida Land Development
Opportunities
Florida Land Development
Opportunities
Oak Park Woman Faces 93 Days in Jail For Planting Vegetable Garden

By ALEXIS WILEY
WJBK | myFOXDetroit.com

OAK PARK, Mich. (WJBK) - "The price of organic food is kind of through the roof," said Julie Bass.

So, why not grow your own? However, Bass' garden is a little unique because it's in her front yard.

"We thought it'd be really cool to do it so the neighbors could see. The neighborhood kids love it, they all come and help," she said.

Bass' cool garden has landed her in hot water with the City of Oak Park. Code enforcement gave her a warning, then a ticket and now she's been charged with a misdemeanor.
Pierce Jones
Program for Resource Efficient Communities
University of Florida
352-392-8074
piercejones@ufl.edu